Modulated Autocorrelation Convolution Networks for Automatic Modulation Classification Based on Small Sample Set
نویسندگان
چکیده
منابع مشابه
Small Sample Issues for Microarray-Based Classification
In order to study the molecular biological differences between normal and diseased tissues, it is desirable to perform classification among diseases and stages of disease using microarray-based gene-expression values. Owing to the limited number of microarrays typically used in these studies, serious issues arise with respect to the design, performance and analysis of classifiers based on micro...
متن کاملAutomatic recommendation of classification algorithms based on data set characteristics
Choosing appropriate classification algorithms for a given data set is very important and useful in practice but also is full of challenges. In this paper, a method of recommending classification algorithms is proposed. Firstly the feature vectors of data sets are extracted using a novel method and the performance of classification algorithms on the data sets is evaluated. Then the feature vect...
متن کاملRough Set-Based Approach for Automatic Emotion Classification of Music
Music emotion is an important component in the field of music information retrieval and computational musicology. This paper proposes an approach for automatic emotion classification, based on rough set (RS) theory. In the proposed approach, four different sets of music features are extracted, representing dynamics, rhythm, spectral, and harmony. From the features, five different statistical pa...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملFlip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification
This paper presents a new version of Dropout called Split Dropout (sDropout) and rotational convolution techniques to improve CNNs’ performance on image classification. The widely used standard Dropout has advantage of preventing deep neural networks from overfitting by randomly dropping units during training. Our sDropout randomly splits the data into two subsets and keeps both rather than dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2971586